Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 301: 122250, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37481833

RESUMO

Fabrication of large-scale engineered tissues requires extensive vascularization to support tissue survival and function. Here, we report a modular fabrication approach, by stacking of patterned collagen membranes, to generate thick (2 mm and beyond), large, three-dimensional, perfusable networks of endothelialized vasculature. In vitro, these perfusable vascular networks exhibit remodeling and evenly distributed perfusion among layers, while maintaining their patterned, open-lumen architecture. Compared to non-perfusable, self-assembled vasculature, constructs with perfusable vasculature demonstrated increased gene expression indicative of vascular development and angiogenesis. Upon implantation onto infarcted rat hearts, perfusable vascular networks attain greater host vascular integration than self-assembled controls, indicated by 2.5-fold greater perfused vascular density measured by histological analysis and 5-fold greater perfusion rate measured by optical microangiography. Together, the success of fabricating thick, perfusable tissues with dense vascularity and rapid anastomoses represents an important step forward for vascular bioengineering, and paves the way towards more complex, large scale, highly metabolic engineered tissues.


Assuntos
Neovascularização Patológica , Engenharia Tecidual , Ratos , Animais , Humanos , Engenharia Tecidual/métodos , Colágeno , Alicerces Teciduais
2.
Tissue Eng Part A ; 27(15-16): 1008-1022, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33003982

RESUMO

Mast cells (MCs) are pro-inflammatory tissue-resident immune cells that play a key role in inflammation. MCs circulate in peripheral blood as progenitors and undergo terminal differentiation in the tissue microenvironment where they can remain for many years. This in situ maturation results in tissue- and species-specific MC phenotypes, culminating in significant variability in response to environmental stimuli. There are many challenges associated with studying mature tissue-derived MCs, particularly in humans. In cases where cultured MCs are able to differentiate in two-dimensional in vitro cultures, there remains an inability for full maturation. Extracellular matrix (ECM) scaffolds provide for a more physiologically relevant environment for cells in vitro and have been shown to modulate the response of other immune cells such as T cells, monocytes, and macrophages. To improve current in vitro testing platforms of MCs and to assess future use of ECM scaffolds for MC regulation, we studied the in vitro response of human MCs cultured on decellularized porcine dermis hydrogels (dermis extracellular matrix hydrogel [dECM-H]). This study investigated the effect of dECM-H on cellular metabolic activity, cell viability, and receptor expression compared to collagen type I hydrogel (Collagen-H). Human MCs showed different metabolic activity when cultured in the dECM-H and also upregulated immunoglobulin E (IgE) receptors associated with MC maturation/activation compared to collagen type I. These results suggest an overall benefit in the long-term culture of human MCs in the dECM-H compared to Collagen-H providing important steps toward a model that is more representative of in vivo conditions. Graphical abstract [Formula: see text] Impact statement Mast cells (MCs) are difficult to culture in vitro as current culture conditions and substrates fail to promote similar phenotypic features observed in vivo. Extracellular matrix (ECM)-based biomaterials offer three-dimensional, tissue-specific environments that more closely resemble in vivo conditions. Our study explores the use of dermal ECM hydrogels for MC culture and shows significant upregulation of metabolic activity, cell viability, and gene expression of markers associated with MC maturation or activation compared to collagen type I-hydrogel and tissue culture plastic controls at 7 days. These results are among the first to describe MC behavior in response to ECM hydrogels.


Assuntos
Matriz Extracelular , Mastócitos , Animais , Diferenciação Celular , Colágeno , Humanos , Hidrogéis , Suínos
3.
Tissue Eng Part B Rev ; 27(6): 590-603, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33164714

RESUMO

Tissue engineers often use biomaterials to provide structural support along with mechanical and chemical signals to modulate the wound healing process. Biomaterials that are implanted into the body interact with a heterogeneous and dynamic inflammatory environment that is present at the site of injury. Whether synthetically derived, naturally derived, or a combination of both, it is important to assess biomaterials for their ability to modulate inflammation to understand their potential clinical use. One important, but underexplored cell in the context of biomaterials is the mast cell (MC). MCs are granulocytic leukocytes that engage in a variety of events in both the innate and adaptive immune systems. Although highly recognized for their roles in allergic reactions, MCs play an important role in wound healing by recognizing antigens through pattern recognition receptors and the high-affinity immunoglobulin E receptor (FceRI) and releasing granules that affect cell recruitment, fibrosis, extracellular matrix deposition, angiogenesis, and vasculogenesis. MCs also mediate the foreign body response, contributing to the incorporation or rejection of implants. Studies of MC-biomaterial interactions can aid in the elucidation of MC roles during the host tissue response and tissue repair. This review is designed for those in the tissue engineering and biomaterial fields who are interested in exploring the role MCs may play in wound-biomaterial interactions and wound healing. With this review, we hope to inspire more research in the MC-biomaterial space to accelerate the design and construction of optimized implants. Impact statement Mast cells (MCs) are highly specialized inflammatory cells that have crucial, but not fully understood, roles in wound healing and tissue repair. Upon stimulation, they recognize foreign antigens and release granules that help orchestrate the inflammatory response after tissue damage or biomaterial implantation. This review summarizes the current use of MCs in biomaterial research along with literature from the past decade focusing on MC interactions with materials used for tissue repair and regeneration. Studying MC-biomaterial interactions will help (i) further understand the process of inflammation and (ii) design biomaterials and tissue-engineered constructs for optimal repair and regeneration.


Assuntos
Materiais Biocompatíveis , Mastócitos , Comunicação Celular , Fibrose , Humanos , Mastócitos/patologia , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...